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Abstract The processes described in the title always have reversible stationary distribu-
tions. In this paper, we give sufficient conditions for the existence of, and for the nonexis-
tence of, nonreversible stationary distributions. In the case of an i.i.d. environment, these
combine to give a necessary and sufficient condition for the existence of nonreversible sta-
tionary distributions.
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1 Introduction

Transport phenomena for noninteracting particles in one dimensional environments is a well
studied subject in the contexts of classical and quantum systems. However, the influence of
interactions among particles in these situations is considerably less well understood. In this
paper, we consider one of the more important models of particle motion with interaction—
the exclusion process. In particular, we will study the exclusion process on Z1 with nearest
neighbor jumps with probabilities pi ∈ (0,1) and qi = 1 − pi from i to i + 1 and i − 1 re-
spectively. This is the continuous time Markov process ηt on {0,1}Z1

with formal generator

Lf (η) =
∑

i

{η(i)[1 − η(i + 1)]pi + η(i + 1)[1 − η(i)]qi+1}[f (ηi,i+1) − f (η)],

where ηi,i+1 is obtained from η by interchanging the ith and (i + 1)st coordinates. The ex-
clusion process has been the object of a lot of attention over the past 35 years, primarily in
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case the transition probabilities are translation invariant—see [1] and [2]. Here, as the title
indicates, we investigate problems where the pi are inhomogeneous, with particular applica-
tions to the case in which the pi are i.i.d. random variables. Among the few rigorous papers
dealing with spatially inhomogeneous asymmetric exclusion processes are [6] and [5].

The i.i.d. model was investigated in a certain approximate fashion in [11] and, more
recently, in [4]. In general, these authors have studied the “phase diagram” of (maximal)
current flow as a function of an equilibrium particle density parameter in the presence of
disorder. Certain interesting phenomena have been uncovered in these works. In particular,
a symmetric flat region in the above mentioned response curves, indicating a forbidden
interval of densities, and the observation, primarily numerical, in the earlier reference that
in the presence of a random locally preferred direction of flow, the current density vanishes
with increasing system size. Our results bolster some of these conclusions: we demonstrate
the existence of current carrying states whenever, for some ε > 0, p0 ≥ 1

2 + ε. Moreover,
the flux in these states vanishes linearly with ε. Furthermore, we vindicate conclusively the
later phenomenon. In particular, whenever p0 < q0 and p0 > q0 have positive probability—
or even if p0 = 1

2 is in the support of the disorder distribution—we show that the current
indeed vanishes as the system size tends to infinity. Furthermore, under the general condition
of zero current, we can characterise all the invariant measures.

This picture is in sharp contrast to the non-interacting version of this problem: at the
end of this paper, we will consider briefly the non-interacting case, and show that there is
a stationary distribution for the system with nonzero flux whenever the pi ’s are i.i.d. and
E log(pi/qi) exists and is nonzero. This difference between the interacting and noninteract-
ing systems might be a bit surprising, since at least at low densities, one might expect the
two systems to have similar properties.

Returning to the exclusion process, we first note that reversible stationary distributions
always exist in our situation. To define them, let πi be defined by taking π0 > 0 and then
πipi = πi+1qi+1 for all i ∈ Z1. The corresponding reversible measure is the product measure
να , where

να{η : η(i) = 1} = αi = πi

1 + πi

. (1.1)

(See Sect. VIII.2 of [9], for example.) According to Theorem 2.1 of [5], these are extremal
in the class I of all stationary distributions if and only if

∑

i

αi(1 − αi) = ∞. (1.2)

When this sum is finite, extremal stationary distributions μn (with n ≥ 0 or −∞ < n < ∞,
depending on the situation) are constructed from these product measures in the following
way: μn(·) = να(· | An), where

An =
⎧
⎨

⎩

{η : ∑i η(i) = n} if
∑

i αi < ∞,
{η : ∑i (1 − η(i)) = n} if

∑
i (1 − αi) < ∞,

{η : ∑i∈T η(i) − ∑
i /∈T (1 − η(i)) = n} otherwise,

where in the third case, T is chosen so that
∑

i∈T αi < ∞ and
∑

i /∈T (1 − αi) < ∞. These
conditional measures do not depend on α, since an irreducible positive recurrent Markov
chain has a unique stationary distribution. In the third case, {μn} does not depend on the
choice of T , except for a possible relabelling.
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In the spatially homogeneous case pi ≡ p, the extremal stationary distributions are com-
pletely known [6]:

Ie = {νρ,0 ≤ ρ ≤ 1}
if p = 1/2 and

Ie = {νρ,0 ≤ ρ ≤ 1} ∪ {μn,−∞ < n < ∞}
if p �= 1/2. Note that in the latter case, νρ is not reversible. (Here νρ denotes the homoge-
neous product measure of density ρ.)

The spatially inhomogeneous case in which Z1 is replaced by {0,1,2, . . .} was treated in
[6]. In that case, the result is that all stationary distributions are reversible.

Our main objective in this paper is to say what we can about the following question:
In the spatially inhomogeneous case on Z1, when do nonreversible stationary distributions
exist? We will give sufficient conditions for the existence and for the nonexistence of such
distributions; they become necessary and sufficient in the case of i.i.d. pi ’s.

An important tool in discussing this issue (as in many involving the exclusion process) is
the flux. For μ ∈ I , this is defined by

φ(μ) = piμ{η : η(i) = 1, η(i + 1) = 0} − qi+1μ{η : η(i) = 0, η(i + 1) = 1}. (1.3)

The fact that this quantity is independent of i can be checked by using
∫
Lf dμ = 0 for

f (η) = η(i). In case pi ≡ p, the flux under νρ is (p − q)ρ(1 − ρ), for example.
It is easy to check that the flux is zero for the reversible stationary distributions described

above. Our first result is a converse to this observation.

Theorem 1 Suppose μ ∈ Ie and φ(μ) = 0. If μ is not the pointmass on η ≡ 0 or on η ≡ 1,
then μ = να for some α satisfying (1.1) if (1.2) is satisfied and μ = μn for some n if not.

For applications of Theorem 1, it is useful to make the following observation:

Proposition 1 Take ε > 0. Suppose that for each n there exists a k so that pi ≥ 1
2 − ε for

all k ≤ i ≤ k + n. Then φ(μ) ≥ −ε for all μ ∈ I . Similarly, if for each n there exists a k so
that pi ≤ 1

2 + ε for all k ≤ i ≤ k + n, then φ(μ) ≤ ε for all μ ∈ I .

Theorem 1 and Proposition 1 will be proved in Sect. 2. Combining these two results, we
obtain a sufficient condition for all stationary distributions to be reversible:

Corollary 1 Suppose that for every ε > 0 and every positive integer n there exist k and l

so that pi ≥ 1
2 − ε for all k ≤ i ≤ k + n and pi ≤ 1

2 + ε for all l ≤ i ≤ l + n. Then μ ∈ I
implies that μ is reversible.

This conclusion that all stationary distributions are reversible under the much stronger
assumption that

lim
i→±∞

pi = 1

2

is a consequence of Theorem 1.1 of [5]. This conclusion also follows from Theorem 1.2
in that paper (assuming infi pi > 0, infi qi > 0) in all cases other than (a) limi→−∞ πi = 0,
limi→+∞ πi = ∞ or (b) limi→−∞ πi = ∞, limi→+∞ πi = 0. When the pi ’s are i.i.d., these
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excluded cases are of course the prevalent ones: case (a) occurs when E log(p0/q0) > 0 and
case (b) when E log(q0/p0) > 0.

To prepare for the next result, we define the exclusion process on [m,n] = {m, . . . , n}
with boundary conditions by allowing the usual transitions in {m, . . . , n} together with the
transitions 0 → 1 at site m at rate pm−1 and 1 → 0 at site n at rate pn. This is a finite state
irreducible Markov chain, and hence has a unique stationary distribution μm,n.

Theorem 2 The flux φ(μm,n) is an increasing function of pm−1,pm, . . . ,pn.

Combining this with the known behavior of μm,n in the homogeneous case yields the
following sufficient condition for the existence of a nonreversible stationary distribution:

Corollary 2 If for some ε > 0, pi ≥ 1
2 + ε for all i, then there exists a (nonreversible) μ ∈ I

with φ(μ) ≥ ε
2 .

This answers a question raised near the end of the introduction to [5]. Theorem 2 and
Corollary 2 will be proved in Sect. 3.

Combining Corollaries 1 and 2, we have the following result for the exclusion process in
which the pi ’s are chosen randomly in an i.i.d. fashion:

Theorem 3 Consider an exclusion process with i.i.d. pi ’s. The following hold with proba-
bility 1:

(a) If for every ε > 0, P (p0 ≥ 1
2 − ε) > 0 and P (p0 ≤ 1

2 + ε) > 0, then all stationary
distributions are reversible.

(b) If for some ε > 0, P (p0 ≥ 1
2 + ε) = 1 or P (p0 ≤ 1

2 − ε) = 1, then there exists a nonre-
versible stationary distribution.

Remark 1 Part (b) clearly follows from Corollary 2 if we replace the i.i.d. assumption with
the assumption that {pi, i ∈ Z1} be stationary and ergodic. The same is not true for part (a).
To see this, consider the case of deterministic pi ’s with

pi =
{

α if i is even,
β if i is odd.

(1.4)

Then all stationary distributions are reversible if and only if α +β = 1. Indeed, if α +β = 1,
then the process is symmetric, so all stationary distributions are exchangeable (and therefore
reversible in this case) by Theorem 1.12 of Chap. VIII of [9]. On the other hand, the homo-
geneous product measures νρ are stationary for all choices of α and β by Theorem 2.1(a) of
the same chapter. However, since

φ(νρ) = (α + β − 1)ρ(1 − ρ),

νρ is not reversible if α + β �= 1. By letting pi be given by (1.4) with probability 1
2 and its

translate with probability 1
2 , one obtains a stationary, ergodic sequence with nonreversible

stationary distributions. So, in order to conclude that all stationary distributions are re-
versible, it is not enough to assume that pi > 1

2 and pi < 1
2 , each a positive proportion

of the time.
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2 Sufficient Conditions for All Stationary Distributions to be Reversible

In this section, we prove Theorem 1 and Proposition 1.

Proof of Theorem 1 The proof is based on the proofs of Theorems 1.2 and 1.3 of [6], so we
will only sketch the parts that are similar. We will use the basic coupling of two copies ηt

and η′
t of the process. In this coupling, particles move together as much as possible. At rate

pi , for example, (η, η′) →
⎧
⎨

⎩

(ηi,i+1, η
′) if η(i) = 1, η(i + 1) = 0; η′(i) = η′(i + 1) or η′(i) = 0, η′(i + 1) = 1,

(η, η′
i,i+1) if η′(i) = 1, η′(i + 1) = 0; η(i) = η(i + 1) or η(i) = 0, η(i + 1) = 1,

(ηi,i+1, η
′
i,i+1) if η(i) = η′(i) = 1; η(i + 1) = η′(i + 1) = 0.

Quantities related to the coupled process will be denoted by tildes. For example, the set of
stationary distributions for the coupled process will be called Ĩ .

For m < n, define the following two functions of a coupled configuration:

fm,n(η, η′) =
n∑

k=m

|η(k) − η′(k)|,

gm,n(η, η′) = # of strict sign changes in the sequence {η′(m) − η(m), . . . , η′(n) − η(n)}.
The fundamental property of these functions that makes them useful is that they cannot
increase except as the result of transitions across the boundaries of [m,n]. Interior transitions
can make them decrease unless ηt ≤ η′

t or ηt ≥ η′
t in the case of fm,n, and unless there is at

most one sign change in the case of gm,n.
We will use the following notation. If ν is a probability measure on {0,1}Z1 × {0,1}Z1

,
then ν{(η, η′) : η(i) = δ, η′(i) = δ′} will be denoted by

ν

(
δ′
δ

i

)
,

with analogous notation for probabilities of cylinder sets involving more than one site.
If ν ∈ Ĩ , then

∫
L̃fm,ndν = 0. Writing this out gives

2
n−1∑

i=m

(pi + qi+1)

[
ν

(1 0
0 1
i i + 1

)
+ ν

(0 1
1 0
i i + 1

)]

= pm−1

[
ν

( 1 0
0 0

m − 1 m

)
− ν

( 1 1
1 0

m − 1 m

)
+ ν

( 0 0
1 0

m − 1 m

)
− ν

( 1 0
1 1

m − 1 m

)]

+ qm

[
ν

( 1 1
0 1

m − 1 m

)
− ν

( 0 1
0 0

m − 1 m

)
+ ν

( 0 1
1 1

m − 1 m

)
− ν

( 0 0
0 1

m − 1 m

)]

+ similar terms coming from the right boundary of [m,n]. (2.1)

The left side of (2.1) represents interior transitions that lead to the loss of (two) discrepan-
cies, while the right side corresponds to the gain or loss of discrepancies in [m,n] due to
transitions across the boundary.
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At this point, the argument differs somewhat according to whether one, both, or neither
of the following hold:

inf
i<0

(pi + qi+1) > 0, inf
i>0

(pi + qi+1) > 0. (2.2)

If both of these infima are 0, then one can let m → −∞, n → +∞ in (2.1) along appropriate
subsequences to conclude that

∞∑

i=−∞
(pi + qi+1)

[
ν

(1 0
0 1
i i + 1

)
+ ν

(0 1
1 0
i i + 1

)]
= 0. (2.3)

It follows from this that ν puts no mass on configurations with adjacent discrepancies of op-
posite types, and then using the invariance of ν again, that it puts no mass on configurations
with discrepancies of opposite type at all. Therefore, it follows that

ν{(η, η′) : η ≤ η′ or η′ ≤ η} = 1. (2.4)

We will now assume that (2.2) holds. (The argument in the case that one of the infima in
(2.2) is zero and the other is positive is a combination of these two arguments, and will be
omitted.) It now follows that

∞∑

i=−∞

[
ν

(1 0
0 1
i i + 1

)
+ ν

(0 1
1 0
i i + 1

)]
< ∞.

Using the invariance of ν again, it follows that

∞∑

i=−∞

[
ν

(1 0
0 1
i i + k

)
+ ν

(0 1
1 0
i i + k

)]
< ∞

for any k ≥ 1. (See the proof of Lemma 4.4 of [6] for details.) Next, using the fact that
ν ∈ Ĩ implies

∫
L̃gm,ndν = 0, one can show that ν concentrates on configurations satisfying

gm,n(η, η′) ≤ 1 for all m < n. (See the proofs of Lemmas 4.7 and 4.8 of [6].)
The conclusion is the following: In all cases, ν concentrates on configurations (η, η′)

with the property that there is at most one strict sign change in the doubly infinite sequence

{. . . , η′(−2) − η(−2), η′(−1) − η(−1), η′(0) − η(0), η′(1) − η(1), η′(2) − η(2), . . .},
i.e., such that exactly one of the following is true:

(a) η = η′.
(b) η ≤ η′ and η �= η′.
(c) η ≥ η′ and η �= η′.
(d) There is a k so that η(i) ≤ η′(i) for all i ≤ k with infinitely many strict inequalities, and

η(i) ≥ η′(i) for all i > k with infinitely many strict inequalities.
(e) There is a k so that η(i) ≥ η′(i) for all i ≤ k with infinitely many strict inequalities, and

η(i) ≤ η′(i) for all i > k with infinitely many strict inequalities.

(The fact that finitely many strict inequalities is excluded in cases (d) and (e) is a conse-
quence of the fact that the system is in equilibrium; if there were finitely many, there would
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be some rate at which they would be annihilated, and since they cannot be created, this
would contradict stationarity.) Since each of the above sets of configurations is closed for
the evolution of the coupled process, if ν ∈ Ĩe , then ν concentrates on exactly one of these
sets.

Now take μ,μ′ ∈ Ie such that φ(μ) = φ(μ′) = 0. By Proposition 2.14 of Chap. VIII of
[9], there is a ν ∈ Ĩe with marginals μ and μ′ respectively. We will show next that ν cannot
concentrate on either of the last two sets described above. Suppose, for example, that it
concentrates on the set described in (d). The k appearing there is random, so we will denote
it by K(η,η′). Let

um = pm−1μ{η : η(m − 1) = 1, η(m) = 0} = qmμ{η : η(m − 1) = 0, η(m) = 1},
u′

m = pm−1μ
′{η : η(m − 1) = 1, η(m) = 0} = qmμ′{η : η(m − 1) = 0, η(m) = 1}.

The second equality in each case comes from the fact that the fluxes are zero. Then

um − u′
m

pm−1
= μ{η : η(m − 1) = 1, η(m) = 0} − μ′{η : η(m − 1) = 1, η(m) = 0}

= ν

( 1 1
1 0

m − 1 m

)
+ ν

( 0 0
1 0

m − 1 m

)
+ ν

( 0 1
1 0

m − 1 m

)

− ν

( 1 0
1 1

m − 1 m

)
− ν

( 1 0
0 0

m − 1 m

)
− ν

( 1 0
0 1

m − 1 m

)
.

The third term on the right above is zero since ν concentrates on the set described in (d).
The second, fourth and sixth terms are bounded by

ν{(η, η′) : K(η,η′) ≤ m}. (2.5)

For the sixth term, for example, note that η′(m−1) = 1, η′(m) = 0, η(m−1) = 0, η(m) = 1
implies that K(η,η′) = m−1. The probability in (2.5) tends to zero as m → −∞. Therefore,

pm−1

[
ν

( 1 1
1 0

m − 1 m

)
− ν

( 1 0
0 0

m − 1 m

)]
− (um − u′

m) → 0

as m → −∞. Similarly

qm

[
ν

( 1 1
0 1

m − 1 m

)
− ν

( 0 1
0 0

m − 1 m

)]
− (um − u′

m) → 0

as m → −∞. Taking differences, we see that

pm−1

[
ν

( 1 1
1 0

m − 1 m

)
− ν

( 1 0
0 0

m − 1 m

)]
− qm

[
ν

( 1 1
0 1

m − 1 m

)
− ν

( 0 1
0 0

m − 1 m

)]

tends to zero as m → −∞. Note that this says that the sum of the first, second, fifth and sixth
terms on the right side of (2.1) tends to zero as m → −∞. The third, fourth, seventh and
eighth terms are bounded by (2.5), so they tend to zero individually as m → −∞. Applying
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a similar argument to the terms in (2.1) that come from the right boundary of [m,n], we see
that the entire right side of (2.1) tends to zero as m → −∞, n → ∞. It follows by passing to
the limit in (2.1) that (2.3) holds, and then that (2.4) holds, contradicting the assumption that
ν concentrates on the set described in (d). A similar argument shows that (e) cannot hold
either. Therefore, either μ ≤ μ′ or μ′ ≤ μ.

To complete the proof of Theorem 1, take μ ∈ Ie and let μ′ be one of the extremal
reversible measures—να or μn according to whether (1.2) holds or not. For each such choice
of μ′, we now know that either μ ≤ μ′ or μ′ ≤ μ. Suppose first that (1.2) holds. Then there
is an α∗ ∈ [0,1] so that

μ

{≤ να if α ≥ α∗,
≥ να if α ≤ α∗.

Since the να’s, together with the pointmasses on the configurations that are ≡ 0 and ≡ 1,
form a weakly continuous one parameter family, it follows that μ = να∗ if α∗ ∈ (0,1), and
is the pointmass on the ≡ 0 or ≡ 1 configuration if α∗ = 0 or 1.

If (1.2) fails, then it follows that μ concentrates on ∪nAn ∪{0,1}, where 0 and 1 represent
the identically 0 and identically 1 configurations respectively, so that the statement of the
theorem holds in this case as well. �

Proof of Proposition 1 We will prove the first statement; the proof of the second is similar.
Suppose that pi ≥ 1

2 − ε for k ≤ i ≤ k + n, and take μ ∈ I . Summing (1.3) gives

nφ(μ) =
k+n−1∑

i=k

[piμ{η : η(i) = 1, η(i + 1) = 0} − qi+1μ{η : η(i) = 0, η(i + 1) = 1}]

≥
k+n−1∑

i=k

[(
1

2
− ε

)
μ{η : η(i) = 1, η(i + 1) = 0}

−
(

1

2
+ ε

)
μ{η : η(i) = 0, η(i + 1) = 1}

]

= −2ε

k+n−1∑

i=k

μ{η : η(i) = 1, η(i + 1) = 0}

+
(

1

2
+ ε

) k+n−1∑

i=k

[μ{η : η(i) = 1} − μ{η : η(i + 1) = 1}]

≥ −2εn +
(

1

2
+ ε

)
[μ{η : η(k) = 1} − μ{η : η(k + n) = 1}].

Since n is arbitrary, it follows that φ(μ) ≥ −2ε. To remove the extra factor of two, it suffices
to note that

k+n−1∑

i=k

μ{η : η(i) = 1, η(i + 1) = 0} ≤ n

2

for even n, since the events occuring in consecutive summands above are disjoint. �
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3 Sufficient Conditions for the Existence of Nonreversible Stationary Distributions

In this section, we prove Theorem 2 and Corollary 2.

Proof of Theorem 2 Consider two choices pm−1, . . . , pn and p′
m−1, . . . , p

′
n of jump proba-

bilities satisfying p′
i ≥ pi for each i. Quantities related to the process corresponding to the

p′
i ’s will be identified with a prime. We need to show that φ(μ′

m,n) ≥ φ(μm,n). In order to
do so, we construct a coupled process as follows: (Xt , ηt , η

′
t , Yt ) has state space

{
(x, η, η′, y) ∈ Z1 × {0,1}[m,n] × {0,1}[m,n] × Z1 : x +

n∑

i=m

[η(i) − η′(i)] + y = 0

and x +
k∑

i=m

[η(i) − η′(i)] ≥ 0 for all m − 1 ≤ k ≤ n

}
.

Transitions inside [m,n] correspond to letting particles in the two configurations move to-
gether as much as possible. Transitions across the boundaries (m − 1,m) and (n,n + 1)

follow the same rules, with Xt and Yt keeping track of the number of discrepancies that
leave or enter [m,n] at the left or right, respectively. To be more explicit, if the 1 0 appear-
ing below are at sites i, i + 1 respectively (with m ≤ i < n), then

(
η′
η

)
=

(
· · · 1 0

1 0
· · ·

)
→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
· · · 0 1

1 0
· · ·

)
at rate p′

i − pi,

(
· · · 0 1

0 1
· · ·

)
at rate pi,

while if the 0 1 appearing below are at sites i, i + 1 respectively, for example, then

(
η′
η

)
=

(
· · · 0 1

0 1
· · ·

)
→

⎧
⎪⎪⎨

⎪⎪⎩

(
· · · 0 1

1 0
· · ·

)
at rate qi+1 − q ′

i+1,

(
· · · 1 0

1 0
· · ·

)
at rate q ′

i+1.

Note that in both cases, the discrepancy
( 0

1

)
is produced to the left of the discrepancy

( 1
0

)
.

This means that the inequality x + ∑k

i=m[η(i) − η′(i)] ≥ 0 is not violated by these transi-
tions.

At the left boundary, one has, for example, the following transitions:

(
x,

(
η′
η

))
=

(
x,

(
0
0

· · ·
))

→

⎧
⎪⎪⎨

⎪⎪⎩

(
x + 1,

(
1
0

· · ·
))

at rate p′
m−1 − pm−1,

(
x,

(
1
1

· · ·
))

at rate pm−1,

or
(

x,

(
η′
η

))
=

(
x,

(
1
0

· · ·
))

→
(

x − 1,

(
1
1

· · ·
))

at rate pm−1.

While we have not listed all the possible transitions, hopefully we have listed enough so that
the reader can easily construct the others.
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Now, start this process at (0, η, η,0), where η is any point in {0,1}[m,n]. The limiting
distribution as t → ∞ of ηt is μm,n while the limiting distribution of η′

t is μ′
m,n. For fixed

m ≤ k < n, let

Nt = (the number of times a particle in ηt has crossed from k to k + 1 by time t)

− (the number of times a particle in ηt has crossed from k + 1 to k by time t),

with N ′
t being defined in an analogous way in terms of the process η′

t . Then one can easily
check that

N ′
t − Nt = Xt +

k∑

i=m

[ηt (i) − η′
t (i)],

so that N ′
t ≥ Nt a.s. On the other hand,

d

dt
ENt = pkP

η[ηt (k) = 1, ηt (k + 1) = 0] − qk+1P
η[ηt (k) = 0, ηt (k + 1) = 1],

so that

φ(μm,n) = lim
t→∞

d

dt
ENt = lim

t→∞
ENt

t
.

It follows from these observations that φ(μ′
m,n) ≥ φ(μm,n) as required. �

Proof of Corollary 2 Let μm,n be the stationary measure for the process on [m,n] cor-
responding to the given pi ’s, and μ′

m,n be the one for the process with p′
i ≡ 1

2 + ε. By
Theorem 2, φ(μm,n) ≥ φ(μ′

m,n). By Theorem 2.9 of [7],

lim
m→−∞
n→+∞

μ′
m,n = ν1/2,

and therefore,

lim
m→−∞
n→+∞

φ(μ′
m,n) = ε

2
.

It follows that any weak limit μ of μm,n as m → −∞, n → +∞ is in I and satisfies
φ(μ) ≥ ε

2 . The measure μ is not reversible since all reversible measures have zero flux. �

4 The Noninteracting Case

In this section, we consider a system of independent particles, each of which evolves as
a continuous time Markov chain on Z1 with unit exponential holding times and transition
probabilities pi and qi from i to i + 1 and i − 1 respectively. It has been known since at
least the publication of Doob’s classic 1953 book [3] that one way to construct stationary
distributions for this system is to let {η(i), i ∈ Z1} be independent Poisson random variables
with Eη(i) = σi , where σ = {σi} is an invariant measure for the corresponding one-particle
motion:

σi = σi−1pi−1 + σi+1qi+1. (4.1)
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By Theorem 4.12 of [8], these provide all of the extremal stationary distributions if the
one-particle chain is not positive recurrent.

In such a stationary distribution, the flux of particles between i and i + 1 is

φ = piσi − qi+1σi+1, (4.2)

which is independent of i by (4.1).
Solving (4.2) recursively leads to

σn = pn−1 · · ·pm

qn · · ·qm+1
σm − φ

qn

(
1 + pn−1

qn−1
+ · · · + pn−1 · · ·pm+1

qn−1 · · ·qm+1

)

for m < n. It follows that if φ > 0, there is a positive solution σ to (4.2) if and only if

1 + q0

p0
+ q0q1

p0p1
+ · · · < ∞,

while if φ < 0, there is a positive solution to (4.2) if and only if

1 + p0

q0
+ p0p−1

q0q−1
+ · · · < ∞.

We therefore have the following result:

Theorem 4 Suppose the pi ’s are i.i.d. Then there is an extremal stationary distribution for
the independent particle system with positive flux if E log(p0/q0) > 0, and one with negative
flux if E log(q0/p0) > 0.

Not surprisingly, these are exactly the conditions for a random walk in a random envi-
ronment to be transient to the right or left respectively—see Theorem 1.7 in [10].
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